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Synthesis of a novel rigid tetrathiafulvalene-s-p-benzoquinone diad (TTF-s-Q)
with inherent structural configuration suitable for intramolecular
charge-transfer 
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The synthesis of a novel D–A diad, involving a TTF moiety
covalently linked to p-benzoquinone via a rigid spacer, shows
a bent structure in the solid state which provides intrinsic
through-space intramolecular charge-transfer interaction.

Since the discovery1 of the first organic metal in 1973, much
attention has been devoted to the investigation of TTF, its
derivatives and analogs, as electron donor components of many
charge transfer (CT) complexes and ion radical salts.2 In order
to control the stoichiometry of the D (donor) and A (acceptor)
components and the degree of charge-transfer in CT complexes,
which are crucial parameters in the design of ‘organic metals’,
the concept of D–A–D and A–D–A triads was developed,3 in
which the D and A fragments are integral parts of a single
molecule. Several D–TCNQ–D,3 D–TCNAQ–D4 and A–TTF–
A5 systems have been studied. In this context, TTF-s-TCNQ
systems have obvious appeal,6 but have proved to be an elusive
goal.7,8 However, systems involving TTF-p-TCNQ are
known.9

‘TTF-s-quinone’ systems are known both in cyclic (I)10 and
non-cyclic (II) derivatives.11 Recently, rigid TTF-s-quinone
derivatives (III) (containing two linking s bonds) were
synthesized.12 In none of these systems, was an intramolecular
CT band discernible in the UV–VIS spectrum, for different
reasons.8 Evidently, there is a need to design a molecule in
which both the distance and orientation between the TTF and
the quinone moieties are fixed, in order to achieve a CT
interaction.

We now present the synthesis (Scheme 1), electrochemistry,
X-ray structure and intramolecular charge-transfer properties of
new rigid TTF-s-Q (6a,b) molecules, involving TTF moieties

chemically linked to p-benzoquinone by nonconjugated rigid
cyclic rings, via two s linkers. This type of molecule could be
a potential precursor for TTF-s-TCNQ systems. The unique
bent structure of 6a in the solid state (Fig. 1), in which the plane
of the D moiety lies above the plane of the A moiety, with
essentially eclipsed overlap, affords the first example of a non-
cyclic system with built-in through-space s-type interaction
between the p-systems of the D and A components.13 The
synthesis of 6 involves two cycloaddition reactions14 to afford
3 as the sole R,S,R,S stereoisomer in which the 1,3-dithiole-
2-thione moiety is located opposite to the aryl ring, probably
due to steric hindrance in the S,R,R,S isomer. The hydrogens on
the carbons adjacent to the sulfur atoms are orientated in the
same spatial direction with respect to the bent planes of the
molecule. This configuration was confirmed by X-ray structure
determination for the ‘oxo’ derivative 4, which was generated
from 3 (2 mmol). The latter reaction and the following ones

Scheme 1
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which are described in Scheme 1 were performed according to
known procedures.15 Products 6a and 6b were separated from
their reaction mixtures by silica gel column chromatography
(CH2Cl2); both had a deep green color.

The UV–VIS spectrum of 6a shows a broad absorption band
in the 550–950 nm region, centered at ca. 685 nm (e ~ 310),
which points to a weak charge transfer interaction. The spectra
were recorded at various concentrations of 6a, and the
extinction coefficient of this low energy band varied in
accordance with Beer–Lambert law. Therefore, this band is
assigned to an intramolecular charge-transfer interaction. 

The cyclic voltammogram16 of 6a shows two one-electron
reversible oxidation waves at E1

1/2 = 0.55 and E2
1/2 = 0.825 V,

characteristic for tetraalkylthio-TTF derivatives,2a and two
reversible reduction waves, one at 20.525 V (one-electron) and
a smaller one at 21.20 V, for the reduction of the disubstituted
p-benzoquinone moiety. (At slower scan rates a trace of an ill-
defined ‘third’ reversible couple is observed in between the
above two reduction waves, which is related to a product
derived from the decomposition of the dianion.) Product 6b
affords a similar cyclic voltammogram pattern, with similar
redox potentials. It is generally expected that a weak CT
interaction will not affect the redox potentials pattern given by
the relatively insensitive cyclic voltammetry technique.

Deep green needles of 6a17 were crystallized from CH2Cl2 by
slow evaporation of the solvent. The X-ray structure (Fig. 1)
verifies the bent configuration of the molecule and shows that
the acceptor p-benzoquinone moiety is spatially located above
the donor dimethylthio-TTF unit. Indeed, the intramolecular
distance between the face-to-face planes of the donor and
acceptor moieties is 3.29 Å, which may be compared to the
plane-to-plane distances between donor and acceptor molecules
in crystal packings of mixed-stacks intermolecular charge
transfer of HMTSF–TCNQ18 and ET–TCNQ19 complexes. The
apparently low degree of CT in the ground state of 6 was also
confirmed by EPR measurements, which after sunlight irradia-
tion gave rise to a photoinduced intramolecular electron transfer
process, resulting in the appearance of broad signals (yet to be
analyzed), with two ‘g’ factors (g1 = 2.0050; g2 = 2.0064).

Compounds 6a and 6b are among the first examples of
systems with inherent intramolecular through space charge
transfer properties. Their synthesis opens up a way to obtain
new compounds with controllable overlap between the donor
and acceptor units, as well as controllable degree of charge
transfer, e.g. by changing the strength of the acceptor moiety.
Also, it is noteworthy that 6b and its derivatives could be

potential candidates for constructing Langmuir–Blodgett films
and investigating their physical properties.
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Fig. 1 ORTEP drawing of 6a at the 50% probability level. Hydrogen atoms
and the numbering of the carbon atoms have been omitted for clarity. Side-
view of the molecule (above) and view in the plane of the TTF moiety
(below).
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